Bei Speculative Evolution haben wir ausgehend von wissenschaftlichen Publikationen über synthetische Biologie, Gentechnik und Robotik überlegt, wie Arten weiterentwickelt werden könnten, um ihre Widerstandsfähigkeit zu erhöhen. Daraufhin haben wir Textanweisungen formuliert, um mit DALL-E KI-generierte Bilder zu erstellen. Jede spekulative Art in der Simulation hat so eine Hintergrundgeschichte, die in realen Szenarien verwurzelt ist.

Frut Flies | |
2022 | genetically modified brains to enable remote control Laboratory research by Sebesta et al., Rice University, 2022 |
2054 | cyborg fruit flies equipped with biodegradable laser pointers to illuminate misbehavior in the ecosystem |
Stammbaum der 15 Arten von insgesamt 17
Samsung G955F, Android 9, Zurich, Switzerland (20-1)
Samsung G955F, Android 9, Zurich, Switzerland (20-1-1)
Samsung G960F, Android 10, Bolton, United Kingdom (20-1-1-1)
Samsung G950F, Android 9, São Paulo, Brazil (20-1-1-1-1)
Samsung G955U, Android 9, , China (20-1-1-1-1-1)
Samsung G955F, Android 9, Lucerne, Switzerland (20-1-1-2)
Samsung G955F, Android 9, Zurich, Switzerland (20-2)
Samsung G955F, Android 9, Zurich, Switzerland (20-2-1)
Samsung G955F, Android 9, Zurich, Switzerland (20-3)
Samsung G955F, Android 9, Zurich, Switzerland (20-3-1)
Samsung G955F, Android 9, Zurich, Switzerland (20-4)
Samsung G955F, Android 9, Berlin, Germany (20-4-1)
Samsung T220, Android 14, Key Largo, United States (20-4-2)
Samsung G955F, Android 9, Berlin, Germany (20-6)
Samsung G955U, Android 9, Basel, Switzerland (20-6-1)
Subsecond multichannel magnetic control of select neural circuits in freely moving flies
Sebesta, C., Torres Hinojosa, D., Wang, B. et al. Nat. Mater. 21, 951–958 (2022). doi:10.1038/s41563-022-01281-7
https://www.nature.com/articles/s41563-022-01281-7
Abstract
Precisely timed activation of genetically targeted cells is a powerful tool for the study of neural circuits and control of cell-based therapies. Magnetic control of cell activity, or ‘magnetogenetics’, using magnetic nanoparticle heating of temperature-sensitive ion channels enables remote, non-invasive activation of neurons for deep-tissue applications and freely behaving animal studies. However, the in vivo response time of thermal magnetogenetics is currently tens of seconds, which prevents precise temporal modulation of neural activity. Moreover, magnetogenetics has yet to achieve in vivo multiplexed stimulation of different groups of neurons. Here we produce subsecond behavioural responses in Drosophila melanogaster by combining magnetic nanoparticles with a rate-sensitive thermoreceptor (TRPA1-A). Furthermore, by tuning magnetic nanoparticles to respond to different magnetic field strengths and frequencies, we achieve subsecond, multichannel stimulation. These results bring magnetogenetics closer to the temporal resolution and multiplexed stimulation possible with optogenetics while maintaining the minimal invasiveness and deep-tissue stimulation possible only by magnetic control.
Featuring new technology using magnetic fields to activate target neurons in flies