Spekulative Arten

Bei Speculative Evolution haben wir ausgehend von wissenschaftlichen Publikationen über synthetische Biologie, Gentechnik und Robotik überlegt, wie Arten weiterentwickelt werden könnten, um ihre Widerstandsfähigkeit zu erhöhen. Daraufhin haben wir Textanweisungen formuliert, um mit DALL-E KI-generierte Bilder zu erstellen. Jede spekulative Art in der Simulation hat so eine Hintergrundgeschichte, die in realen Szenarien verwurzelt ist.
 
 


Frut Flie
Frut Flies
2022genetically modified brains to enable remote control
Laboratory research by Sebesta et al., Rice University, 2022
2054cyborg fruit flies equipped with biodegradable laser pointers to illuminate misbehavior in the ecosystem

Stammbaum der 15 Arten von insgesamt 17

    • Frut Flie, Art 20-1Samsung G955F, Android 9, Zurich, Switzerland (20-1)
      • Frut Flie, Art 20-1-1Samsung G955F, Android 9, Zurich, Switzerland (20-1-1)
        • Frut Flie, Art 20-1-1-1Samsung G960F, Android 10, Bolton, United Kingdom (20-1-1-1)
          • Frut Flie, Art 20-1-1-1-1Samsung G950F, Android 9, São Paulo, Brazil (20-1-1-1-1)
            • Frut Flie, Art 20-1-1-1-1-1Samsung G955U, Android 9, , China (20-1-1-1-1-1)
        • Frut Flie, Art 20-1-1-2Samsung G955F, Android 9, Lucerne, Switzerland (20-1-1-2)
    • Frut Flie, Art 20-2Samsung G955F, Android 9, Zurich, Switzerland (20-2)
      • Frut Flie, Art 20-2-1Samsung G955F, Android 9, Zurich, Switzerland (20-2-1)
    • Frut Flie, Art 20-3Samsung G955F, Android 9, Zurich, Switzerland (20-3)
      • Frut Flie, Art 20-3-1Samsung G955F, Android 9, Zurich, Switzerland (20-3-1)
    • Frut Flie, Art 20-4Samsung G955F, Android 9, Zurich, Switzerland (20-4)
      • Frut Flie, Art 20-4-1Samsung G955F, Android 9, Berlin, Germany (20-4-1)
      • Frut Flie, Art 20-4-2Samsung T220, Android 14, Key Largo, United States (20-4-2)
    • Frut Flie, Art 20-6Samsung G955F, Android 9, Berlin, Germany (20-6)
      • Frut Flie, Art 20-6-1Samsung G955U, Android 9, Basel, Switzerland (20-6-1)

Subsecond multichannel magnetic control of select neural circuits in freely moving flies

Sebesta, C., Torres Hinojosa, D., Wang, B. et al. Nat. Mater. 21, 951–958 (2022). doi:10.1038/s41563-022-01281-7
https://www.nature.com/articles/s41563-022-01281-7

Abstract

Precisely timed activation of genetically targeted cells is a powerful tool for the study of neural circuits and control of cell-based therapies. Magnetic control of cell activity, or ‘magnetogenetics’, using magnetic nanoparticle heating of temperature-sensitive ion channels enables remote, non-invasive activation of neurons for deep-tissue applications and freely behaving animal studies. However, the in vivo response time of thermal magnetogenetics is currently tens of seconds, which prevents precise temporal modulation of neural activity. Moreover, magnetogenetics has yet to achieve in vivo multiplexed stimulation of different groups of neurons. Here we produce subsecond behavioural responses in Drosophila melanogaster by combining magnetic nanoparticles with a rate-sensitive thermoreceptor (TRPA1-A). Furthermore, by tuning magnetic nanoparticles to respond to different magnetic field strengths and frequencies, we achieve subsecond, multichannel stimulation. These results bring magnetogenetics closer to the temporal resolution and multiplexed stimulation possible with optogenetics while maintaining the minimal invasiveness and deep-tissue stimulation possible only by magnetic control.
Featuring new technology using magnetic fields to activate target neurons in flies