Bei Speculative Evolution haben wir ausgehend von wissenschaftlichen Publikationen über synthetische Biologie, Gentechnik und Robotik überlegt, wie Arten weiterentwickelt werden könnten, um ihre Widerstandsfähigkeit zu erhöhen. Daraufhin haben wir Textanweisungen formuliert, um mit DALL-E KI-generierte Bilder zu erstellen. Jede spekulative Art in der Simulation hat so eine Hintergrundgeschichte, die in realen Szenarien verwurzelt ist.

Anolis Lizards | |
2019 | CRISPR/Cas9 gene edited through microinjection of unfertilized oocytes Laboratory research by Rasys et al., 2019 |
2054 | CRISPR/Cas9 gene edited with customizable colors adding chameleon genes |
Stammbaum der 42 Arten von insgesamt 52
Samsung G955F, Android 9, Zurich, Switzerland (31-1)
Samsung G955F, Android 9, Zurich, Switzerland (31-1-1)
Huawei BTK, Android 12, Surabaya, Indonesia (31-1-1-1)
Samsung G955F, Android 9, Zurich, Switzerland (31-2)
Samsung G955F, Android 9, Zurich, Switzerland (31-2-1)
Samsung G955F, Android 9, Zurich, Switzerland (31-2-1)
Samsung T720, Android 11, Jose C. Paz, Argentina (31-2-3)
, Android 10, Petropavl, Kazakhstan (31-2-4)
Samsung G950F, Android 9, São Paulo, Brazil (31-2-5)
Samsung G955F, Android 9, Zurich, Switzerland (31-3)
Samsung G955F, Android 9, Zurich, Switzerland (31-3-1)
Samsung G955F, Android 9, Zurich, Switzerland (31-4)
Samsung G955F, Android 9, Zurich, Switzerland (31-4-1)
, Android 12, Rio de Janeiro, Brazil (31-5)
Samsung A042M, Android 13, Lanus, Argentina (31-5-1)
Samsung T227U, Android 13, Kissimmee, United States (31-5-1-1)
, Android 13, , Spain (31-5-1-1-1)
, Android 13, , Italy (31-5-1-1-1-1)
Samsung G950F, Android 9, São Paulo, Brazil (31-5-1-1-1-1-1)
Samsung G955U, Android 9, , China (31-5-1-1-1-1-1-1)
, Android 12, , Thailand (31-5-1-1-1-1-1-1-1)
, Android 12, Santiago, Chile (31-5-1-1-2)
, Android 11, Cebu City, Philippines (31-5-2)
Lenovo TB, Android 10, Guasave, Mexico (31-5-2-1)
, Android 13, Newham, United Kingdom (31-5-2-1-1)
Samsung T720, Android 11, Jose C. Paz, Argentina (31-6)
Samsung S916U, Android 14, West Hartford, United States (31-6-1)
Samsung G955U, Android 9, , China (31-6-1-1)
Samsung G955F, Android 9, Lucerne, Switzerland (31-6-1-1-1)
Samsung G955F, Android 9, Lucerne, Switzerland (31-6-1-1-1-1)
Samsung A536B, Android 14, Warsaw, Poland (31-6-1-1-1-1-1)
Samsung G955F, Android 9, Lucerne, Switzerland (31-6-1-1-2)
Samsung G955U, Android 9, , China (31-6-1-2)
Samsung G950F, Android 9, São Paulo, Brazil (31-7)
, Android 13, Niederdorf, Switzerland (31-7-1)
Samsung G955F, Android 9, Lucerne, Switzerland (31-7-1-1)
Samsung G955F, Android 9, Lucerne, Switzerland (31-7-1-1-1)
Samsung G955F, Android 9, Lucerne, Switzerland (31-7-1-1-1)
Samsung A356E, Android 14, Santiago, Chile (31-9-1)
, Android 13, Troy, United States (31-9-2)
Samsung G955F, Android 9, Lucerne, Switzerland (31-9-2-1)
Samsung G955F, Android 9, Lucerne, Switzerland (31-9-2-1-1)
CRISPR-Cas9 Gene Editing in Lizards through Microinjection of Unfertilized Oocytes
Rasys, Ashley M et al. Cell reports vol. 28,9 (2019): 2288-2292.e3. doi:10.1016/j.celrep.2019.07.089
https://pubmed.ncbi.nlm.nih.gov/31461646/
Abstract
CRISPR-Cas9-mediated gene editing has enabled the direct manipulation of gene function in many species. However, the reproductive biology of reptiles presents unique barriers for the use of this technology, and there are no reptiles with effective methods for targeted mutagenesis. Here, we demonstrate that the microinjection of immature oocytes within the ovaries of Anolis sagrei females enables the production of CRISPR-Cas9-induced mutations. This method is capable of producing F0 embryos and hatchlings with monoallelic or biallelic mutations. We demonstrate that these mutations can be transmitted through the germline to establish genetically modified strains of lizards. Direct tests of gene function can now be performed in Anolis lizards, an important model for studies of reptile evolution and development.
Gene Editing in Lizards through Microinjection of Ovarian Follicles Flow diagram detailing CRISPR design, surgical procedure, collection periods, and screening strategy. CRISPR design shows the placement and sequence of CRISPR guides A (blue), B (pink), and C (cyan) within exon 2 of the tyr gene; protospacer adjacent motif (PAM) sites are underlined. Surgical procedure: lizard anesthesia and the surgical steps to access and microinject ovary follicles. Collection periods: the time between gathering eggs and raising hatchlings. Screening strategy: the steps used to detect tyr crispants, including (1) PCR primer design; (2) PAGE analysis, which can reliably detect 2–3 bp changes; and (3) Sanger sequencing. See also Figure S1 and Video S1.