Spekulative Arten

Bei Speculative Evolution haben wir ausgehend von wissenschaftlichen Publikationen über synthetische Biologie, Gentechnik und Robotik überlegt, wie Arten weiterentwickelt werden könnten, um ihre Widerstandsfähigkeit zu erhöhen. Daraufhin haben wir Textanweisungen formuliert, um mit DALL-E KI-generierte Bilder zu erstellen. Jede spekulative Art in der Simulation hat so eine Hintergrundgeschichte, die in realen Szenarien verwurzelt ist.
 
 


Red Spider Mite
Red Spider Mites
2011genetically modified to control population
Laboratory research by Grbić et al., 2011
2054genetically modified spider mites for more environmentally friendly pest management strategies

Stammbaum der 44 Arten von insgesamt 53

    • Red Spider Mite, Art 33-1Samsung G955F, Android 9, Zurich, Switzerland (33-1)
      • Red Spider Mite, Art 33-1-1Samsung G955F, Android 9, Zurich, Switzerland (33-1-1)
        • Red Spider Mite, Art 33-1-1-1Samsung G960F, Android 10, Bolton, United Kingdom (33-1-1-1)
          • Red Spider Mite, Art 33-1-1-1-1Samsung G950F, Android 9, São Paulo, Brazil (33-1-1-1-1)
          • Red Spider Mite, Art 33-1-1-1-2Samsung G950F, Android 9, São Paulo, Brazil (33-1-1-1-2)
          • Red Spider Mite, Art 33-1-1-1-3Samsung G955U, Android 9, , China (33-1-1-1-3)
        • Red Spider Mite, Art 33-1-1-2Huawei BTK, Android 12, Surabaya, Indonesia (33-1-1-2)
      • Red Spider MiteHuawei BTK, Android 12, Surabaya, Indonesia (33-1-1-2)
    • Red Spider Mite, Art 33-2Samsung G955F, Android 9, Zurich, Switzerland (33-2)
      • Red Spider Mite, Art 33-2-1Samsung G955F, Android 9, Zurich, Switzerland (33-2-1)
        • Red Spider Mite, Art 33-2-1-1Samsung G955F, Android 9, Stuttgart, Germany (33-2-1-1)
          • Red Spider Mite, Art 33-2-1-1-1Samsung G955F, Android 9, Stuttgart, Germany (33-2-1-1-1)
            • Red Spider Mite, Art 33-2-1-1-1-1Samsung G960F, Android 10, Bolton, United Kingdom (33-2-1-1-1-1)
              • Red Spider Mite, Art 33-2-1-1-1-1-1Samsung G955F, Android 9, Berlin, Germany (33-2-1-1-1-1-1)
                • Red Spider Mite, Art 33-2-1-1-1-1-1-1Samsung G950F, Android 9, São Paulo, Brazil (33-2-1-1-1-1-1-1)
            • Red Spider Mite, Art 33-2-1-1-1-2Samsung G950F, Android 9, São Paulo, Brazil (33-2-1-1-1-2)
              • Red Spider Mite, Art 33-2-1-1-1-2-1Samsung G950F, Android 9, São Paulo, Brazil (33-2-1-1-1-2-1)
          • Red Spider Mite, Art 33-2-1-1-2Samsung A725F, Android 14, Iloilo City, Philippines (33-2-1-1-2)
    • Red Spider Mite, Art 33-3Samsung G955F, Android 9, Zurich, Switzerland (33-3)
      • Red Spider Mite, Art 33-3-1Samsung G955F, Android 9, Zurich, Switzerland (33-3-1)
      • Red Spider MiteSamsung G955F, Android 9, Zurich, Switzerland (33-3-1)
      • Red Spider Mite, Art 33-3-3Samsung G950F, Android 9, São Paulo, Brazil (33-3-3)
      • Red Spider Mite, Art 33-3-4Samsung G950F, Android 9, São Paulo, Brazil (33-3-4)
    • Red Spider Mite, Art 33-4Samsung G955F, Android 9, Zurich, Switzerland (33-4)
      • Red Spider Mite, Art 33-4-1, Android 13, Barcelona, Spain (33-4-1)
      • Red Spider Mite, Art 33-4-2Samsung G950F, Android 9, São Paulo, Brazil (33-4-2)
    • Red Spider Mite, Art 33-5, Android 13, Cape Town, South Africa (33-5)
      • Red Spider Mite, Art 33-5-1Samsung G950F, Android 9, São Paulo, Brazil (33-5-1)
        • Red Spider Mite, Art 33-5-1-1Samsung G950F, Android 9, São Paulo, Brazil (33-5-1-1)
          • Red Spider Mite, Art 33-5-1-1-1Samsung G950F, Android 9, São Paulo, Brazil (33-5-1-1-1)
            • Red Spider Mite, Art 33-5-1-1-1-1Samsung G955U, Android 9, Schaffhausen, Switzerland (33-5-1-1-1-1)
              • Red Spider Mite, Art 33-5-1-1-1-1-1Samsung G986U1, Android 13, Monterrey, Mexico (33-5-1-1-1-1-1)
      • Red Spider Mite, Art 33-5-2Samsung G950F, Android 9, São Paulo, Brazil (33-5-2)
        • Red Spider Mite, Art 33-5-2-1Samsung G950F, Android 9, São Paulo, Brazil (33-5-2-1)
      • Red Spider Mite, Art 33-5-3Samsung G950F, Android 9, São Paulo, Brazil (33-5-3)
        • Red Spider Mite, Art 33-5-3-1Samsung G955F, Android 9, Lucerne, Switzerland (33-5-3-1)
      • Red Spider Mite, Art 33-5-4Samsung G950F, Android 9, São Paulo, Brazil (33-5-4)
        • Red Spider Mite, Art 33-5-4-1Samsung G955U, Android 9, Schaffhausen, Switzerland (33-5-4-1)
          • Red Spider Mite, Art 33-5-4-1-1Samsung G955F, Android 9, Lucerne, Switzerland (33-5-4-1-1)
    • Red Spider Mite, Art 33-6Samsung G950F, Android 9, São Paulo, Brazil (33-6)
      • Red Spider Mite, Art 33-6-1Samsung G950F, Android 9, São Paulo, Brazil (33-6-1)
        • Red Spider Mite, Art 33-6-1-1Samsung G955F, Android 9, Lucerne, Switzerland (33-6-1-1)
    • Red Spider Mite, Art 33-7Samsung G950F, Android 9, São Paulo, Brazil (33-7)
      • Red Spider Mite, Art 33-7-1Samsung G950F, Android 9, São Paulo, Brazil (33-7-1)

The genome of Tetranychus urticae reveals herbivorous pest adaptations

Grbić, M., Van Leeuwen, T., Clark, R. et al. Nature 479, 487–492 (2011). doi:10.1038/nature10640
https://www.nature.com/articles/nature10640

Abstract

The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90megabases T. urticae has the smallest sequenced arthropod genome. Compared with other arthropods, the spider mite genome shows unique changes in the hormonal environment and organization of the Hox complex, and also reveals evolutionary innovation of silk production. We find strong signatures of polyphagy and detoxification in gene families associated with feeding on different hosts and in new gene families acquired by lateral gene transfer. Deep transcriptome analysis of mites feeding on different plants shows how this pest responds to a changing host environment. The T. urticae genome thus offers new insights into arthropod evolution and plant–herbivore interactions, and provides unique opportunities for developing novel plant protection strategies.
  1. A phylogeny of the cytochrome P450 (CYP) genes and heat map of the response of CYP genes to host transfer. Two-thirds of the genes that are tandemly duplicated or that form clusters (indicated by black vertical lines) are co-regulated.
  2. Global changes in gene expression after host shift.
  3. Fold changes of important gene family members in digestion and detoxification are colour coded. The analysis of differential expression
b and c. is with a 5% false discovery rate as assessed with RNA-seq data collected in biological triplicate (fold changes between mean values are plotted).
Comparative organization of Hox clusters and expression pattern of the T. urticae engrailed gene.
  1. T. urticae, T. castaneum and D. melanogaster Hox clusters. Gene sizes and intergenic distances are shown to scale. Dashed lines represent breaks in the cluster >1Mb. In T. urticae, fushi tarazu and Antennapedia are present in duplicate whereas abdominal-A and Hox3/zerknullt are missing (red asterisk).
  2. Variable pressure scanning electron microscopy (SEM) image of adult T. urticae with two main body regions indicated: P, prosoma; O, opisthosoma.
  3. T. urticae engrailed (en) expression pattern. en transcripts are detected in five prosomal stripes that correspond to future pedipalpal (Pp), four walking leg (L1–L4) and two opisthosomal (O1 and O2) segments. Scale bars: b, 0.125mm; c, 40 μm.