Spekulative Arten

Bei Speculative Evolution haben wir ausgehend von wissenschaftlichen Publikationen über synthetische Biologie, Gentechnik und Robotik überlegt, wie Arten weiterentwickelt werden könnten, um ihre Widerstandsfähigkeit zu erhöhen. Daraufhin haben wir Textanweisungen formuliert, um mit DALL-E KI-generierte Bilder zu erstellen. Jede spekulative Art in der Simulation hat so eine Hintergrundgeschichte, die in realen Szenarien verwurzelt ist.
 
 


Alfalfa
Alfalfa
2017genetically modified to be herbicide-tolerant, mostly used for hay fed to dairy cows and horses
International trade by Lei et al., 2017
20541

Stammbaum der 30 Arten von insgesamt 35

    • Alfalfa, Art 55-1Samsung G955F, Android 9, Zurich, Switzerland (55-1)
      • Alfalfa, Art 55-1-1, Android 14, Moscow, Russia (55-1-1)
    • Alfalfa, Art 55-2Samsung G955F, Android 9, Zurich, Switzerland (55-2)
      • Alfalfa, Art 55-2-1Samsung A146U, Android 14, Polson, United States (55-2-1)
        • Alfalfa, Art 55-2-1-1Samsung A525M, Android 13, Juiz de Fora, Brazil (55-2-1-1)
        • Alfalfa, Art 55-2-1-2Samsung G950F, Android 9, São Paulo, Brazil (55-2-1-2)
      • Alfalfa, Art 55-2-2, Android 11, Kuala Lumpur, Malaysia (55-2-2)
      • Alfalfa, Art 55-2-3Samsung G950F, Android 9, São Paulo, Brazil (55-2-3)
        • Alfalfa, Art 55-2-3-1Samsung G950F, Android 9, São Paulo, Brazil (55-2-3-1)
      • Alfalfa, Art 55-2-4Samsung G955U, Android 9, , China (55-2-4)
        • Alfalfa, Art 55-2-4-1Samsung G955F, Android 9, Lucerne, Switzerland (55-2-4-1)
    • Alfalfa, Art 55-4Samsung G996B, Android 13, Funes, Argentina (55-4)
      • Alfalfa, Art 55-4-1Samsung T227U, Android 13, Kissimmee, United States (55-4-1)
        • Alfalfa, Art 55-4-1-1, Android 14, Wittmund, Germany (55-4-1-1)
          • Alfalfa, Art 55-4-1-1-1Samsung G986U1, Android 13, Monterrey, Mexico (55-4-1-1-1)
          • Alfalfa, Art 55-4-1-1-2Samsung G955F, Android 9, Lucerne, Switzerland (55-4-1-1-2)
        • Alfalfa, Art 55-4-1-2Samsung S918B, Android 14, São Paulo, Brazil (55-4-1-2)
          • Alfalfa, Art 55-4-1-2-1Samsung G950F, Android 9, São Paulo, Brazil (55-4-1-2-1)
            • Alfalfa, Art 55-4-1-2-1-1Samsung G955F, Android 9, Lucerne, Switzerland (55-4-1-2-1-1)
            • Alfalfa, Art 55-4-1-2-1-2Samsung N975F, Android 12, Barranquilla, Colombia (55-4-1-2-1-2)
          • Alfalfa, Art 55-4-1-2-2, Android 11, Talagutong, Philippines (55-4-1-2-2)
        • Alfalfa, Art 55-4-1-3Samsung G955U, Android 9, Basel, Switzerland (55-4-1-3)
          • Alfalfa, Art 55-4-1-3-1Samsung G986U1, Android 13, Monterrey, Mexico (55-4-1-3-1)
    • Alfalfa, Art 55-5Samsung G950F, Android 9, São Paulo, Brazil (55-5)
      • Alfalfa, Art 55-5-1Samsung G950F, Android 9, São Paulo, Brazil (55-5-1)
        • Alfalfa, Art 55-5-1-1Samsung G955F, Android 9, Lucerne, Switzerland (55-5-1-1)
      • Alfalfa, Art 55-5-2Samsung G955U, Android 9, Xi'an, China (55-5-2)
    • Alfalfa, Art 55-8Samsung G950F, Android 9, São Paulo, Brazil (55-8)
      • Alfalfa, Art 55-8-1Samsung G955F, Android 9, Lucerne, Switzerland (55-8-1)
        • Alfalfa, Art 55-8-1-1, Android 13, Newham, United Kingdom (55-8-1-1)

The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage

Lei Y, Hannoufa A, Yu P. Int J Mol Sci. 2017 Jan 29;18(2):298. doi: 10.3390/ijms18020298. PMID: 28146083; PMCID: PMC5343834.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343834/

Abstract

Alfalfa is one of the most important legume forage crops in the world. In spite of its agronomic and nutritive advantages, alfalfa has some limitations in the usage of pasture forage and hay supplement. High rapid degradation of protein in alfalfa poses a risk of rumen bloat to ruminants which could cause huge economic losses for farmers. Coupled with the relatively high lignin content, which impedes the degradation of carbohydrate in rumen, alfalfa has unbalanced and asynchronous degradation ratio of nitrogen to carbohydrate (N/CHO) in rumen. Genetic engineering approaches have been used to manipulate the expression of genes involved in important metabolic pathways for the purpose of improving the nutritive value, forage yield, and the ability to resist abiotic stress. Such gene modification could bring molecular structural changes in alfalfa that are detectable by advanced structural analytical techniques. These structural analyses have been employed in assessing alfalfa forage characteristics, allowing for rapid, convenient and cost-effective analysis of alfalfa forage quality. In this article, we review two major obstacles facing alfalfa utilization, namely poor protein utilization and relatively high lignin content, and highlight genetic studies that were performed to overcome these drawbacks, as well as to introduce other improvements to alfalfa quality. We also review the use of advanced molecular structural analysis in the assessment of alfalfa forage for its potential usage in quality selection in alfalfa breeding.
Biosynthesis of proanthocyanidins/anthocyanins and lignin monolognols. This figure was made based on information from Zabala et al. [25], Nesi et al. [29], Vanholme et al. [30] and Jonker [13]. PAL, l-phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate coenzyme A ligase; CCR, cinnamoyl coenzyme A reductase; CAD, cinnamyl alcohol dehydrogenase; HCT, hydroxycinnamoyl-CoA: shikimate/quinate hydroxycinnamoyltransferase; C3H, coumarate 3-hydroxylase; CCoAOMT, caffeoyl CoA 3-O-methyltransferase; F5H, ferulate 5-hydroxylase; COMT, caffeic acid 3-O-methyltransferase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; DFR, dihydroflavanol 4-reductase; ANS, anthocyanidin synthase; UFGT, UDP-flavonoid glucosyltransferase. H lignin, hydroxyphenyl; S lignin, syringyl; G lignin, guaiacyl.