Bei Speculative Evolution haben wir ausgehend von wissenschaftlichen Publikationen über synthetische Biologie, Gentechnik und Robotik überlegt, wie Arten weiterentwickelt werden könnten, um ihre Widerstandsfähigkeit zu erhöhen. Daraufhin haben wir Textanweisungen formuliert, um mit DALL-E KI-generierte Bilder zu erstellen. Jede spekulative Art in der Simulation hat so eine Hintergrundgeschichte, die in realen Szenarien verwurzelt ist.

Insect Robot | |
2022 | micromachined internal skeleton Laboratory research by Gao et al., 2022 |
2054 |
Stammbaum der 63 Arten von insgesamt 75
Samsung G955F, Android 9, Zurich, Switzerland (61-2)
Samsung G955F, Android 9, Stuttgart, Germany (61-2-1)
Samsung G955F, Android 9, Stuttgart, Germany (61-2-1-1)
Samsung G955F, Android 9, Stuttgart, Germany (61-2-1-1-1)
, Android 11, Gomez Palacio, Mexico (61-2-1-1-1-1)
, Android 11, Gomez Palacio, Mexico (61-2-1-1-1-1-1)
, Android 11, Gomez Palacio, Mexico (61-2-1-1-1-1-1-1)
Samsung G955F, Android 9, Berlin, Germany (61-2-1-1-1-1-1-2)
Samsung G950F, Android 9, São Paulo, Brazil (61-2-1-1-1-1-1-3)
Samsung G950F, Android 9, São Paulo, Brazil (61-2-1-1-1-1-1-4)
Samsung G950F, Android 9, São Paulo, Brazil (61-2-1-1-1-1-2)
Samsung G950F, Android 9, São Paulo, Brazil (61-2-1-1-1-1-2-1)
Samsung G950F, Android 9, São Paulo, Brazil (61-2-1-1-1-1-2-2)
Samsung G955U, Android 9, , China (61-2-1-1-1-1-2-2-1)
Samsung G950F, Android 9, São Paulo, Brazil (61-2-2)
Samsung G955F, Android 9, Zurich, Switzerland (61-3)
Samsung G973F, Android 12, Luton, United Kingdom (61-3-1)
Samsung G955F, Android 9, Berlin, Germany (61-3-1-1)
Samsung G950F, Android 9, São Paulo, Brazil (61-3-1-1-1)
Samsung S928B, Android 14, São Paulo, Brazil (61-3-1-1-1-1)
Samsung A556E, Android 14, Maravilha, Brazil (61-3-1-1-1-2)
Samsung G950F, Android 9, São Paulo, Brazil (61-3-1-1-1-2-1)
Samsung A556E, Android 14, Maravilha, Brazil (61-3-1-1-1-3)
Samsung G950F, Android 9, São Paulo, Brazil (61-3-1-1-1-4)
Samsung A215U, Android 12, Boardman, United States (61-3-2)
Samsung G950F, Android 9, São Paulo, Brazil (61-3-3)
, Android 11, , United States (61-4)
Samsung G950F, Android 9, São Paulo, Brazil (61-4-1)
, Android 13, Heilbronn, Germany (61-5)
Samsung G950F, Android 9, São Paulo, Brazil (61-5-1)
Samsung G955U, Android 9, , China (61-5-1-1)
Samsung G955F, Android 9, Limassol, Cyprus (61-5-2)
Samsung A125M, Android 12, São Paulo, Brazil (61-6)
Samsung G955U, Android 9, , China (61-6-1)
Samsung G955U, Android 9, , China (61-6-2)
Samsung G955F, Android 9, Limassol, Cyprus (61-6-2-1)
Samsung G955U, Android 9, , China (61-6-2-1-1)
Samsung G955U, Android 9, Basel, Switzerland (61-6-2-1-1-1)
Samsung G955U, Android 9, Basel, Switzerland (61-6-2-1-2)
Samsung G955U, Android 9, Xi'an, China (61-6-2-1-3)
Samsung G955F, Android 9, Lucerne, Switzerland (61-6-2-2)
Samsung G955F, Android 9, Lucerne, Switzerland (61-6-2-2-1)
Samsung G955U, Android 9, , China (61-6-3)
Samsung G986U1, Android 13, Monterrey, Mexico (61-6-4)
Samsung G955F, Android 9, Lucerne, Switzerland (61-6-4-1)
Samsung G955F, Android 9, Lucerne, Switzerland (61-6-4-2)
Samsung G955U, Android 9, Xi'an, China (61-6-4-2-1)
Samsung G955U, Android 9, Xi'an, China (61-6-4-2-1-1)
Lenovo TB, Android 10, Guasave, Mexico (61-6-4-2-1-1-1)
Samsung G986U1, Android 13, Monterrey, Mexico (61-6-4-2-1-1-1-1)
Samsung G955U, Android 9, Xi'an, China (61-6-5)
Samsung G950F, Android 9, São Paulo, Brazil (61-7)
Samsung G955U, Android 9, , China (61-7-1)
Samsung G950F, Android 9, São Paulo, Brazil (61-8)
Samsung G955U, Android 9, Basel, Switzerland (61-8-1)
Samsung G955F, Android 9, Lucerne, Switzerland (61-8-1-1)
Samsung G955F, Android 9, Lucerne, Switzerland (61-8-1-1-1)
Samsung G955U, Android 9, , China (61-9)
Samsung G955F, Android 9, Limassol, Cyprus (61-9-1)
Samsung G955U, Android 9, , China (61-9-1-1)
Huawei JNY, Android 10, Johannesburg, South Africa (61-9-1-1-1)
Samsung G955F, Android 9, Lucerne, Switzerland (61-9-1-1-1-1)
Samsung G955U, Android 9, , China (61-9-1-2)
Soft Molds with Micro-Machined Internal Skeletons Improve Robustness of Flapping-Wing Robots
Gao et al. Micromachines (2022) doi:10.3390/mi13091489
https://www.mdpi.com/2072-666X/13/9/1489
Abstract
Mobile millimeter and centimeter scale robots often use smart composite manufacturing (SCM) for the construction of body components and mechanisms. The fabrication of SCM mechanisms requires laser machining and laminating flexible, adhesive, and structural materials into small-scale hinges, transmissions, and, ultimately, wings or legs. However, a fundamental limitation of SCM components is the plastic deformation and failure of flexures. In this work, we demonstrate that encasing SCM components in a soft silicone mold dramatically improves the durability of SCM flexure hinges and provides robustness to SCM components. We demonstrate this advance in the design of a flapping-wing robot that uses an underactuated compliant transmission fabricated with an inner SCM skeleton and exterior silicone mold. The transmission design is optimized to achieve desired wingstroke requirements and to allow for independent motion of each wing. We validate these design choices in bench-top tests, measuring transmission compliance, kinematics, and fatigue. We integrate the transmission with laminate wings and two types of actuation, demonstrating elastic energy exchange and limited lift-off capabilities. Lastly, we tested collision mitigation through flapping-wing experiments that obstructed the motion of a wing. These experiments demonstrate that an underactuated compliant transmission can provide resilience and robustness to flapping-wing robots.
Keywords: soft robot materials and design; elastic energy exchange; resonance; compliant components
Keywords: soft robot materials and design; elastic energy exchange; resonance; compliant components
A 3.6 g flapping hummingbird-scale robot with soft transmission. The wing span is 21 cm, and the overall dimensions of the robot are 16 cm × 16 cm when the transmission is in the neutral position. Front view
Top view
Overview of the manufacturing process.
- The wax mold for the compliant transmission was machined using a 1/32 ″ flat end mill in an Othermill micro-milling machine.
- The skeleton of the transmission is a laminate constructed from a 5-layer stack of CF, adhesive, and thin, flexible polymer.
- We apply heat and pressure to fuse the laminate, pop out the skeleton, and fold it into the proper shape.
- The CF internal skeleton was placed into the mold bed, held in place by small horizontal tabs to prevent misalignment.
- Mold was filled with silicone (Dragon Skin 30, Smooth-On), using a syringe to ensure an even fill. After setting completely, the compliant transmission
- was assembled with the wings
- actuator
- and motor chassis
- into the completed FWMAV (j).