Bei Speculative Evolution haben wir ausgehend von wissenschaftlichen Publikationen über synthetische Biologie, Gentechnik und Robotik überlegt, wie Arten weiterentwickelt werden könnten, um ihre Widerstandsfähigkeit zu erhöhen. Daraufhin haben wir Textanweisungen formuliert, um mit DALL-E KI-generierte Bilder zu erstellen. Jede spekulative Art in der Simulation hat so eine Hintergrundgeschichte, die in realen Szenarien verwurzelt ist.

Micro Robot | |
2022 | adaptive controled flapping wings Laboratory research by Mou et al., 2022 |
2054 |
Stammbaum der 34 Arten von insgesamt 40
Samsung G955F, Android 9, Zurich, Switzerland (66-1)
Samsung G955F, Android 9, Zurich, Switzerland (66-1-1)
Samsung G955F, Android 9, Zurich, Switzerland (66-2)
Samsung G955F, Android 9, Zurich, Switzerland (66-2-1)
Samsung A225M, Android 12, Brasília, Brazil (66-2-1-1)
Samsung G955U, Android 9, Xi'an, China (66-2-1-1-1)
Samsung G950F, Android 9, São Paulo, Brazil (66-2-1-2)
Samsung G950F, Android 9, São Paulo, Brazil (66-2-1-2-1)
Samsung G955F, Android 9, Lucerne, Switzerland (66-2-1-2-2)
Samsung G955F, Android 9, Zurich, Switzerland (66-3)
Samsung A217F, Android 12, , India (66-3-1)
, Android 13, Berlin, Germany (66-3-2)
Samsung G950F, Android 9, São Paulo, Brazil (66-3-2-1)
Samsung G950F, Android 9, São Paulo, Brazil (66-3-2-1)
Samsung G950F, Android 9, São Paulo, Brazil (66-3-2-1)
Samsung G950F, Android 9, São Paulo, Brazil (66-3-2-1-1-1-1)
Samsung G950F, Android 9, São Paulo, Brazil (66-3-2-1-1-1-1-1)
Samsung G955U, Android 9, , China (66-3-2-1-1-1-1-1-1)
Samsung G955F, Android 9, Lucerne, Switzerland (66-3-2-1-1-2)
Samsung G781B, Android 13, São Paulo, Brazil (66-3-3)
Samsung G950F, Android 9, São Paulo, Brazil (66-3-3-1)
Samsung A217F, Android 12, , India (66-4)
, Android 11, , United States (66-4-1)
Samsung G950F, Android 9, São Paulo, Brazil (66-4-2)
Samsung G975F, Android 12, Leipzig, Germany (66-4-2-1)
Samsung X510, Android 14, Atalaia, Brazil (66-4-3)
Samsung G955F, Android 9, Lucerne, Switzerland (66-4-3-1)
Samsung M546B, Android 14, São Paulo, Brazil (66-5)
Samsung G955U, Android 9, Schaffhausen, Switzerland (66-5-1)
Samsung G955F, Android 9, Lucerne, Switzerland (66-5-2)
Samsung G950F, Android 9, São Paulo, Brazil (66-7)
Samsung G950F, Android 9, São Paulo, Brazil (66-7-1)
Samsung G955U, Android 9, , China (66-8)
Samsung G955U, Android 9, Basel, Switzerland (66-8-1)
Adaptive Control of Flapping-Wing Micro Aerial Vehicle with Coupled Dynamics and Unknown Model Parameters
Mou et al. (2022), 12(18), 9104, doi:10.3390/app12189104
https://www.mdpi.com/2076-3417/12/18/9104
Abstract
With the complex aerodynamics, the accurate system model of the flapping-wing micro aerial vehicle required for precise control is hard to acquire, meanwhile, due to the unique control strategy, the coupling between the actuators also brings a great challenge to the control of the vehicle. In this paper, we establish a theoretical model of the vehicle. Based on this model, we propose a multiaxial adaptive controller with the reference generator for the attitude and altitude control using the backstepping design method, the stability of this controller is proved by the Lyapunov function. Moreover, a control allocation algorithm is proposed to coordinate the different actuators such that they together produce the desired virtual control efforts. In addition, we detail the lightweight design of the flapping-wing micro aerial vehicle with altitude and attitude sensing onboard. Then, the effectiveness of the proposed control scheme is verified by the simulation and the flight test with multi-axis simultaneous control conducted on this lightweight vehicle. The experimental results show that the controller can maintain hovering flight and ensure the convergence of the adaptive parameters even when the unilateral thrust of the vehicle is not enough due to manufacturing and assembly errors. This work provides an idea for us to explore how insects maintain stable flight in the face of changes in their model parameters.
Keywords: micro aerial vehicle; flapping wing; adaptive control; decoupling control
Keywords: micro aerial vehicle; flapping wing; adaptive control; decoupling control
(a) Illustration of the lightweight FMAV. (b) Explosion diagram of mechanical structure. (c–e) Schematic diagram of control torque generation. Translucent arrows show the nominal wingbeat-average thrust vectors before torque generating. Solid arrows show wingbeat-average thrust and torque after torque generating.