Spekulative Arten

Bei Speculative Evolution haben wir ausgehend von wissenschaftlichen Publikationen über synthetische Biologie, Gentechnik und Robotik überlegt, wie Arten weiterentwickelt werden könnten, um ihre Widerstandsfähigkeit zu erhöhen. Daraufhin haben wir Textanweisungen formuliert, um mit DALL-E KI-generierte Bilder zu erstellen. Jede spekulative Art in der Simulation hat so eine Hintergrundgeschichte, die in realen Szenarien verwurzelt ist.
 
 


Micro Robot
Micro Robot
2022adaptive controled flapping wings
Laboratory research by Mou et al., 2022
2054

Stammbaum der 34 Arten von insgesamt 40

    • Micro Robot, Art 66-1Samsung G955F, Android 9, Zurich, Switzerland (66-1)
      • Micro Robot, Art 66-1-1Samsung G955F, Android 9, Zurich, Switzerland (66-1-1)
    • Micro Robot, Art 66-2Samsung G955F, Android 9, Zurich, Switzerland (66-2)
      • Micro Robot, Art 66-2-1Samsung G955F, Android 9, Zurich, Switzerland (66-2-1)
        • Micro Robot, Art 66-2-1-1Samsung A225M, Android 12, Brasília, Brazil (66-2-1-1)
          • Micro Robot, Art 66-2-1-1-1Samsung G955U, Android 9, Xi'an, China (66-2-1-1-1)
        • Micro Robot, Art 66-2-1-2Samsung G950F, Android 9, São Paulo, Brazil (66-2-1-2)
          • Micro Robot, Art 66-2-1-2-1Samsung G950F, Android 9, São Paulo, Brazil (66-2-1-2-1)
          • Micro Robot, Art 66-2-1-2-2Samsung G955F, Android 9, Lucerne, Switzerland (66-2-1-2-2)
    • Micro Robot, Art 66-3Samsung G955F, Android 9, Zurich, Switzerland (66-3)
      • Micro Robot, Art 66-3-1Samsung A217F, Android 12, , India (66-3-1)
      • Micro Robot, Art 66-3-2, Android 13, Berlin, Germany (66-3-2)
        • Micro Robot, Art 66-3-2-1Samsung G950F, Android 9, São Paulo, Brazil (66-3-2-1)
          • Micro RobotSamsung G950F, Android 9, São Paulo, Brazil (66-3-2-1)
            • Micro RobotSamsung G950F, Android 9, São Paulo, Brazil (66-3-2-1)
              • Micro Robot, Art 66-3-2-1-1-1-1Samsung G950F, Android 9, São Paulo, Brazil (66-3-2-1-1-1-1)
                • Micro Robot, Art 66-3-2-1-1-1-1-1Samsung G950F, Android 9, São Paulo, Brazil (66-3-2-1-1-1-1-1)
                  • Micro Robot, Art 66-3-2-1-1-1-1-1-1Samsung G955U, Android 9, , China (66-3-2-1-1-1-1-1-1)
            • Micro Robot, Art 66-3-2-1-1-2Samsung G955F, Android 9, Lucerne, Switzerland (66-3-2-1-1-2)
      • Micro Robot, Art 66-3-3Samsung G781B, Android 13, São Paulo, Brazil (66-3-3)
        • Micro Robot, Art 66-3-3-1Samsung G950F, Android 9, São Paulo, Brazil (66-3-3-1)
    • Micro Robot, Art 66-4Samsung A217F, Android 12, , India (66-4)
      • Micro Robot, Art 66-4-1, Android 11, , United States (66-4-1)
      • Micro Robot, Art 66-4-2Samsung G950F, Android 9, São Paulo, Brazil (66-4-2)
        • Micro Robot, Art 66-4-2-1Samsung G975F, Android 12, Leipzig, Germany (66-4-2-1)
      • Micro Robot, Art 66-4-3Samsung X510, Android 14, Atalaia, Brazil (66-4-3)
        • Micro Robot, Art 66-4-3-1Samsung G955F, Android 9, Lucerne, Switzerland (66-4-3-1)
    • Micro Robot, Art 66-5Samsung M546B, Android 14, São Paulo, Brazil (66-5)
      • Micro Robot, Art 66-5-1Samsung G955U, Android 9, Schaffhausen, Switzerland (66-5-1)
      • Micro Robot, Art 66-5-2Samsung G955F, Android 9, Lucerne, Switzerland (66-5-2)
    • Micro Robot, Art 66-7Samsung G950F, Android 9, São Paulo, Brazil (66-7)
      • Micro Robot, Art 66-7-1Samsung G950F, Android 9, São Paulo, Brazil (66-7-1)
    • Micro Robot, Art 66-8Samsung G955U, Android 9, , China (66-8)
      • Micro Robot, Art 66-8-1Samsung G955U, Android 9, Basel, Switzerland (66-8-1)

Adaptive Control of Flapping-Wing Micro Aerial Vehicle with Coupled Dynamics and Unknown Model Parameters

Mou et al. (2022), 12(18), 9104, doi:10.3390/app12189104
https://www.mdpi.com/2076-3417/12/18/9104

Abstract

With the complex aerodynamics, the accurate system model of the flapping-wing micro aerial vehicle required for precise control is hard to acquire, meanwhile, due to the unique control strategy, the coupling between the actuators also brings a great challenge to the control of the vehicle. In this paper, we establish a theoretical model of the vehicle. Based on this model, we propose a multiaxial adaptive controller with the reference generator for the attitude and altitude control using the backstepping design method, the stability of this controller is proved by the Lyapunov function. Moreover, a control allocation algorithm is proposed to coordinate the different actuators such that they together produce the desired virtual control efforts. In addition, we detail the lightweight design of the flapping-wing micro aerial vehicle with altitude and attitude sensing onboard. Then, the effectiveness of the proposed control scheme is verified by the simulation and the flight test with multi-axis simultaneous control conducted on this lightweight vehicle. The experimental results show that the controller can maintain hovering flight and ensure the convergence of the adaptive parameters even when the unilateral thrust of the vehicle is not enough due to manufacturing and assembly errors. This work provides an idea for us to explore how insects maintain stable flight in the face of changes in their model parameters.
Keywords: micro aerial vehicle; flapping wing; adaptive control; decoupling control
(a) Illustration of the lightweight FMAV. (b) Explosion diagram of mechanical structure. (c–e) Schematic diagram of control torque generation. Translucent arrows show the nominal wingbeat-average thrust vectors before torque generating. Solid arrows show wingbeat-average thrust and torque after torque generating.