Spekulative Arten

Bei Speculative Evolution haben wir ausgehend von wissenschaftlichen Publikationen über synthetische Biologie, Gentechnik und Robotik überlegt, wie Arten weiterentwickelt werden könnten, um ihre Widerstandsfähigkeit zu erhöhen. Daraufhin haben wir Textanweisungen formuliert, um mit DALL-E KI-generierte Bilder zu erstellen. Jede spekulative Art in der Simulation hat so eine Hintergrundgeschichte, die in realen Szenarien verwurzelt ist.
 
 


Honey Bee
Honey Bees
2020microbiome genetically optimized for disease resistance
Laboratory research by Leonard et al., 2020
2054resilient strain of genetically engineered super bees with additional 3D-printed parts repairing their lost navigational abilities

Stammbaum der 47 Arten von insgesamt 62

    • Honey Bee, Art 7-1Samsung G955F, Android 9, Zurich, Switzerland (7-1)
      • Honey Bee, Art 7-1-1Samsung G955F, Android 9, Zurich, Switzerland (7-1-1)
      • Honey Bee, Art 7-1-2Samsung G955F, Android 9, Zurich, Switzerland (7-1-2)
    • Honey Bee, Art 7-11Samsung G950F, Android 9, São Paulo, Brazil (7-11)
      • Honey Bee, Art 7-11-1Samsung G955U, Android 9, Basel, Switzerland (7-11-1)
    • Honey Bee, Art 7-2Samsung G955F, Android 9, Zurich, Switzerland (7-2)
      • Honey Bee, Art 7-2-1Samsung G955F, Android 9, Zurich, Switzerland (7-2-1)
      • Honey Bee, Art 7-2-2Samsung G955F, Android 9, Zurich, Switzerland (7-2-2)
        • Honey Bee, Art 7-2-2-1, Android 13, São Paulo, Brazil (7-2-2-1)
    • Honey Bee, Art 7-3Samsung G955F, Android 9, Zurich, Switzerland (7-3)
      • Honey Bee, Art 7-3-1Samsung G955F, Android 9, Zurich, Switzerland (7-3-1)
    • Honey Bee, Art 7-4Samsung G955F, Android 9, Zurich, Switzerland (7-4)
      • Honey Bee, Art 7-4-1Samsung G955F, Android 9, Zurich, Switzerland (7-4-1)
      • Honey Bee, Art 7-4-2Samsung G955F, Android 9, Zurich, Switzerland (7-4-2)
        • Honey Bee, Art 7-4-2-1Samsung G955F, Android 9, Stuttgart, Germany (7-4-2-1)
        • Honey Bee, Art 7-4-2-2Samsung G950F, Android 9, São Paulo, Brazil (7-4-2-2)
          • Honey Bee, Art 7-4-2-2-1Samsung G950F, Android 9, São Paulo, Brazil (7-4-2-2-1)
            • Honey Bee, Art 7-4-2-2-1-1Samsung G950F, Android 9, São Paulo, Brazil (7-4-2-2-1-1)
            • Honey Bee, Art 7-4-2-2-1-2Samsung A057M, Android 14, São Paulo, Brazil (7-4-2-2-1-2)
      • Honey Bee, Art 7-4-3, Android 12, , United States (7-4-3)
        • Honey Bee, Art 7-4-3-1Samsung G950F, Android 9, São Paulo, Brazil (7-4-3-1)
          • Honey Bee, Art 7-4-3-1-1Samsung G955F, Android 9, Lucerne, Switzerland (7-4-3-1-1)
            • Honey Bee, Art 7-4-3-1-1-1Samsung G955F, Android 9, Lucerne, Switzerland (7-4-3-1-1-1)
            • Honey Bee, Art 7-4-3-1-1-2, Android 11, , Peru (7-4-3-1-1-2)
              • Honey Bee, Art 7-4-3-1-1-2-1Samsung G955F, Android 9, Lucerne, Switzerland (7-4-3-1-1-2-1)
      • Honey Bee, Art 7-4-4Samsung G950F, Android 9, São Paulo, Brazil (7-4-4)
      • Honey Bee, Art 7-4-5Huawei BTK, Android 12, Surabaya, Indonesia (7-4-5)
    • Honey Bee, Art 7-5Samsung G955F, Android 9, Zurich, Switzerland (7-5)
      • Honey Bee, Art 7-5-1Samsung G955F, Android 9, Lucerne, Switzerland (7-5-1)
        • Honey Bee, Art 7-5-1-1Samsung G955F, Android 9, Lucerne, Switzerland (7-5-1-1)
          • Honey Bee, Art 7-5-1-1-1Samsung G955U, Android 9, Xi'an, China (7-5-1-1-1)
            • Honey Bee, Art 7-5-1-1-1-1Samsung G955U, Android 9, Xi'an, China (7-5-1-1-1-1)
            • Honey Bee, Art 7-5-1-1-1-2Samsung G955F, Android 9, Lucerne, Switzerland (7-5-1-1-1-2)
          • Honey Bee, Art 7-5-1-1-2Samsung G955F, Android 9, Lucerne, Switzerland (7-5-1-1-2)
      • Honey Bee, Art 7-5-2Samsung G955F, Android 9, Lucerne, Switzerland (7-5-2)
    • Honey Bee, Art 7-8, Android 13, Berlin, Germany (7-8)
      • Honey Bee, Art 7-8-1, Android 11, Kuala Lumpur, Malaysia (7-8-1)
        • Honey Bee, Art 7-8-1-1Samsung G955F, Android 9, Lucerne, Switzerland (7-8-1-1)
        • Honey Bee, Art 7-8-1-2Samsung G955F, Android 9, Lucerne, Switzerland (7-8-1-2)
    • Honey Bee, Art 7-9Samsung G950F, Android 9, São Paulo, Brazil (7-9)
      • Honey Bee, Art 7-9-1Samsung G950F, Android 9, São Paulo, Brazil (7-9-1)
        • Honey Bee, Art 7-9-1-1Samsung G955U, Android 9, Schaffhausen, Switzerland (7-9-1-1)
          • Honey Bee, Art 7-9-1-1-1Samsung G955F, Android 9, Lucerne, Switzerland (7-9-1-1-1)
            • Honey Bee, Art 7-9-1-1-1-1Samsung G955F, Android 9, Lucerne, Switzerland (7-9-1-1-1-1)
              • Honey Bee, Art 7-9-1-1-1-1-1, Android 13, Cairo, Egypt (7-9-1-1-1-1-1)
            • Honey Bee, Art 7-9-1-1-1-2Samsung G955F, Android 9, Lucerne, Switzerland (7-9-1-1-1-2)
        • Honey Bee, Art 7-9-1-2Samsung G955F, Android 9, Lucerne, Switzerland (7-9-1-2)

Engineered symbionts activate honey bee immunity and limit pathogens

Leonard, Sean P et al. Science (New York, N.Y.) vol. 367,6477 (2020): 573-576. doi:10.1126/science.aax9039
https://pubmed.ncbi.nlm.nih.gov/32001655/

Abstract

Honey bees are essential pollinators threatened by colony losses linked to the spread of parasites and pathogens. Here, we report a new approach for manipulating bee gene expression and protecting bee health. We engineered a symbiotic bee gut bacterium, Snodgrassella alvi, to induce eukaryotic RNA interference (RNAi) immune responses. We show that engineered S. alvi can stably recolonize bees and produce double-stranded RNA to activate RNAi and repress host gene expression, thereby altering bee physiology, behavior, and growth. We used this approach to improve bee survival after a viral challenge, and we show that engineered S. alvi can kill parasitic Varroa mites by triggering the mite RNAi response. This symbiont-mediated RNAi approach is a tool for studying bee functional genomics and potentially for safeguarding bee health.
(A) Colonization of newly emerged honey bees by different inoculum sizes. The percentage of bees colonized in each treatment is annotated above the inoculation dose. N = 53 bees from two hives. (B) Stability of S. alvi colonization over time. N = 48 bees from three hives. Colors in (A) and (B) correspond to different source hives. (C) Stability of GFP expression by engineered S. alvi over time. (D) Photograph of dissected bee. S. alvi resides in the ileum (gray box). (E and F) Ilea of bees 11 days after colonization with nonfluorescent (E) or fluorescent (F) S. alvi. E2-Crimson fluorescence from engineered S. alvi is blue. Scale bars, 150 μm. Error bars in (A) to (C) are 95% bootstrap confidence intervals.
Symbiont-mediated RNAi reduces expression of a specific host gene and alters feeding behavior and physiology.
  1. Plasmid design for off-target dsRNA control (pDS-GFP) and InR1 knockdown plasmid (pDS-InR1).
  2. Bees colonized with engineered S. alvi expressing InR1 dsRNA (pDS-InR1 plasmid) show reduced expression of InR1 throughout bee body regions for 10 days, as compared to bees colonized with off-target dsRNA control (pDS-GFP). Total N = 29 bees from one hive.
  3. pDS-InR1 plasmid increases host feeding activity (sucrose sensitivity response) measured 5 days after inoculation. Curves are a binomial-family generalized linear model (GLM) fit to the response data for N = 67 bees from two hives.
  4. pDS-InR1 plasmid significantly increases bee weight, measured 10 and 15 days post inoculation (Mann-Whitney U test). Total N = 135 bees from one hive. See Fig. S4 for additional trial. Error bars and shading represent standard error. **, *** indicate p < 0.01, 0.001, respectively.