Spekulative Arten

Bei Speculative Evolution haben wir ausgehend von wissenschaftlichen Publikationen über synthetische Biologie, Gentechnik und Robotik überlegt, wie Arten weiterentwickelt werden könnten, um ihre Widerstandsfähigkeit zu erhöhen. Daraufhin haben wir Textanweisungen formuliert, um mit DALL-E KI-generierte Bilder zu erstellen. Jede spekulative Art in der Simulation hat so eine Hintergrundgeschichte, die in realen Szenarien verwurzelt ist.
 
 


Bat Robot
Bat Robot
2012morphing wings using SMA actuators
Laboratory research by Colorado et al., 2012
2054

Stammbaum der 54 Arten von insgesamt 76

    • Bat Robot, Art 71-1Samsung G955F, Android 9, Zurich, Switzerland (71-1)
      • Bat Robot, Art 71-1-1Samsung G955F, Android 9, Berlin, Germany (71-1-1)
      • Bat Robot, Art 71-1-2Samsung G955F, Android 9, Lucerne, Switzerland (71-1-2)
    • Bat Robot, Art 71-2Samsung G955F, Android 9, Zurich, Switzerland (71-2)
      • Bat Robot, Art 71-2-1Samsung G955F, Android 9, Zurich, Switzerland (71-2-1)
        • Bat Robot, Art 71-2-1-1Samsung G955F, Android 9, Zurich, Switzerland (71-2-1-1)
          • Bat Robot, Art 71-2-1-1-1Samsung G950F, Android 9, São Paulo, Brazil (71-2-1-1-1)
          • Bat Robot, Art 71-2-1-1-2, Android 13, Recife, Brazil (71-2-1-1-2)
          • Bat Robot, Art 71-2-1-1-3Samsung A127F, Android 13, Naaldwijk, The Netherlands (71-2-1-1-3)
        • Bat Robot, Art 71-2-1-2Samsung G955U, Android 9, , China (71-2-1-2)
      • Bat Robot, Art 71-2-2Samsung G950F, Android 9, São Paulo, Brazil (71-2-2)
    • Bat Robot, Art 71-3Samsung G955F, Android 9, Zurich, Switzerland (71-3)
      • Bat Robot, Art 71-3-1Samsung G955F, Android 9, Stuttgart, Germany (71-3-1)
      • Bat Robot, Art 71-3-2Samsung G950F, Android 9, São Paulo, Brazil (71-3-2)
    • Bat Robot, Art 71-4Samsung G955F, Android 9, Stuttgart, Germany (71-4)
      • Bat Robot, Art 71-4-1Samsung A125U, Android 12, , United States (71-4-1)
      • Bat Robot, Art 71-4-2Samsung G950F, Android 9, São Paulo, Brazil (71-4-2)
      • Bat Robot, Art 71-4-3Samsung G950F, Android 9, São Paulo, Brazil (71-4-3)
      • Bat Robot, Art 71-4-4Samsung G950F, Android 9, São Paulo, Brazil (71-4-4)
        • Bat Robot, Art 71-4-4-1Samsung G986U1, Android 13, Monterrey, Mexico (71-4-4-1)
    • Bat Robot, Art 71-5Samsung G955F, Android 9, Stuttgart, Germany (71-5)
      • Bat Robot, Art 71-5-1Samsung G955F, Android 9, Berlin, Germany (71-5-1)
    • Bat Robot, Art 71-6Samsung G955F, Android 9, Berlin, Germany (71-6)
      • Bat Robot, Art 71-6-1Samsung G955F, Android 9, Berlin, Germany (71-6-1)
        • Bat Robot, Art 71-6-1-1Samsung G950F, Android 9, São Paulo, Brazil (71-6-1-1)
          • Bat Robot, Art 71-6-1-1-1Samsung G955U, Android 9, , China (71-6-1-1-1)
          • Bat Robot, Art 71-6-1-1-2Samsung G955F, Android 9, Lucerne, Switzerland (71-6-1-1-2)
            • Bat Robot, Art 71-6-1-1-2-1Samsung G955F, Android 9, Lucerne, Switzerland (71-6-1-1-2-1)
            • Bat Robot, Art 71-6-1-1-2-2Samsung G955F, Android 9, Lucerne, Switzerland (71-6-1-1-2-2)
          • Bat Robot, Art 71-6-1-1-3Samsung G955F, Android 9, Lucerne, Switzerland (71-6-1-1-3)
        • Bat Robot, Art 71-6-1-2Samsung G986U1, Android 13, Monterrey, Mexico (71-6-1-2)
        • Bat Robot, Art 71-6-1-3Samsung G955F, Android 9, Lucerne, Switzerland (71-6-1-3)
          • Bat Robot, Art 71-6-1-3-1Samsung G955F, Android 9, Lucerne, Switzerland (71-6-1-3-1)
    • Bat Robot, Art 71-7Samsung G950F, Android 9, São Paulo, Brazil (71-7)
      • Bat Robot, Art 71-7-1Samsung G955F, Android 9, Lucerne, Switzerland (71-7-1)
    • Bat Robot, Art 71-8Samsung S911B, Android 13, Buenos Aires, Argentina (71-8)
      • Bat Robot, Art 71-8-1Samsung G950F, Android 9, São Paulo, Brazil (71-8-1)
        • Bat Robot, Art 71-8-1-1Samsung G955U, Android 9, Schaffhausen, Switzerland (71-8-1-1)
          • Bat Robot, Art 71-8-1-1-1Samsung G955U, Android 9, Basel, Switzerland (71-8-1-1-1)
            • Bat Robot, Art 71-8-1-1-1-1Samsung G955U, Android 9, Basel, Switzerland (71-8-1-1-1-1)
              • Bat Robot, Art 71-8-1-1-1-1-1Samsung G955U, Android 9, , China (71-8-1-1-1-1-1)
            • Bat Robot, Art 71-8-1-1-1-2Samsung G955F, Android 9, Lucerne, Switzerland (71-8-1-1-1-2)
          • Bat Robot, Art 71-8-1-1-2Samsung G955F, Android 9, Lucerne, Switzerland (71-8-1-1-2)
            • Bat Robot, Art 71-8-1-1-2-1Samsung G955F, Android 9, Lucerne, Switzerland (71-8-1-1-2-1)
        • Bat Robot, Art 71-8-1-2Samsung G955F, Android 9, Lucerne, Switzerland (71-8-1-2)
          • Bat Robot, Art 71-8-1-2-1Samsung G955F, Android 9, Lucerne, Switzerland (71-8-1-2-1)
      • Bat Robot, Art 71-8-2Samsung G955U, Android 9, Basel, Switzerland (71-8-2)
      • Bat Robot, Art 71-8-3Samsung G955F, Android 9, Lucerne, Switzerland (71-8-3)
        • Bat Robot, Art 71-8-3-1Samsung G986U1, Android 13, Monterrey, Mexico (71-8-3-1)
          • Bat Robot, Art 71-8-3-1-1Samsung G955F, Android 9, Lucerne, Switzerland (71-8-3-1-1)
      • Bat Robot, Art 71-8-4Samsung G955F, Android 9, Lucerne, Switzerland (71-8-4)
        • Bat Robot, Art 71-8-4-1Lenovo TB, Android 10, Guasave, Mexico (71-8-4-1)
          • Bat Robot, Art 71-8-4-1-1Samsung G955F, Android 9, Lucerne, Switzerland (71-8-4-1-1)
            • Bat Robot, Art 71-8-4-1-1-1Samsung G955F, Android 9, Lucerne, Switzerland (71-8-4-1-1-1)

Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators

Colorado et al. Bioinspir. Biomim. 7 036006 (2012). doi:10.1088/1748-3182/7/3/036006
https://iopscience.iop.org/article/10.1088/1748-3182/7/3/036006

Abstract

This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance–motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s-1.
Actuation mechanisms: (i) four SMA-muscles (supplied by Migamotors) of 1.1 g that provide the morphing wing motion, (ii) one servo motor of 8g that provides the flapping-wing motion. Electronics onboard: (i) arduino-based board+IMU (6 g), (ii) four MOSFET-boards to power the SMA artificial muscles (4 g), (iii) 49 MHz receiver (2 g), and (iv) LiPo battery of 30 g. The overall weight of the skeleton+electronics is 79 g (without battery).
CAD design of the bat robot detailing the kinematics frames of references.
Antagonistic mechanism of SMA-based muscle actuators.